UNCLASSIFIED

AD 296 031

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-2-4

USNRDL-TR-591

Copy / OS 26 October 1962

603

SAUNO.

PHOTOMICROGRAPHIC TECHNIQUE FOR MEASURING GRAIN DENSITIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS

by E. V. Benton

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY SAN FRANCISCO 24, CALIFORNIA

12ND. P7463

RADIOLOGICAL PHYSICS BRANCH E. Tochilin. Head

NUCLEONICS DIVISION W.E. Kreger, Head

ADMINISTRATIVE INFORMATION

This report covers a facet of the work authorized during FY 1961 and 1962 by the Bureau of Ships under RDT&E Subproject S-R007 II 01, Task 0549, titled "Effects of Space Radiation." Details of this work are found in the U. S. Naval Radiological Defense Laboratory FY 1962 Technical Program as Program D-1, Problem 3, entitled "Emulsion Studies for Evaluating Potential Radiation Hazards from Heavy Cosmic Ray Particles," the objective of which is to conduct basic dosimetric studies aimed at determining the rate of energy loss (REL) of primary cosmic rays in tissue. Punds to support this work during FY 1963 were provided by the Bureau of Ships on Budget Project 10, Allotment 178/62.

ACKNOWLEDGMENTS

The author would like to thank H. H. Heckman for many stimulating and helpful discussions; and C. Duzen for his critical and pertinent suggestions.

Eugene P. Cooper

Eugene P. Cooper Scientific Director l. D. H. 20

E.B. Roth, CAPT USN
Commanding Officer and Director

ABSTRACT

A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emulsions is reported. The method consists of obtaining photomicrographs of particle tracks with a superimposed image of a calibrated eyepiece-micrometer disc. The gap lengths are measured to an accuracy of 1/4 micron.

SUMMARY

This report describes a technique developed at NRDL for measuring grain densities of highly ionized particle tracks in nuclear emulsions. The method consists of using a microscope to obtain photomicrographs that yield the desired information.

INTRODUCTION

Nuclear emulsions are designed primarily to respond to charged particles. They differ from ordinary photographic emulsions in several ways. The important differences are: (1) they are much thicker, i.e., thicknesses vary from 10 to 3000 microns; and (2) the silver bromide to gelatin ratio is much higher in nuclear emulsions (4:1 by weight). As a charged particle traverses the emulsion, it loses its energy by the processes of excitation and ionization of atoms in the emulsion and, for electrons, by radiation of electromagnetic energy. For massive, highly charged ions, we are concerned only with the energy loss due to the ionization of atoms.

The number of grains per unit length of track that become developable is a function of the rate of energy loss of the particle. The energy can come from the original particle or from the secondary electrons which are produced in the process of ionization. Upon development, these emulsion grains become chiefly metallic silver while the other crystals of silver bromide are dissolved. A charged particle track in a nuclear emulsion is a series of roughly collinear, spherical grains. If the rate of energy loss of the particle is such that not every grain is made developable, then the distribution of distances between developed grains (gaps) is exponential, 1,2 and is of the form:

$$N(x) = N_0 e^{-x/L} \tag{1}$$

where N(ℓ) is the number of gaps greater than some ℓ , N is the total number of gaps and ℓ is the mean gap length.

The grain density of a track in emulsion (the number of developed grains per unit length) can yield information with regard to the rate of energy loss of the particle which produced this track. This infomation can, in turn, be used to determine the velocity of the particle and, if its residual range is known, its charge (mass).

Grain density can seldom be measured directly by counting the developed grains. Usually it is necessary to obtain estimates of the true grain density indirectly.3

One good estimate of grain density is known as $\mathbf{g}_1 = 1/\bar{k}$, where \bar{k} is the mean gap length. Another way to measure $\bar{\ell}$ is to find the least-squares solution for the slope of the gap-length distribution, Eq (1). In cases where the rate of energy loss of the particle is very large, the mean gap length can be the order of 1/2 micron and less. The accurate measure of small distances done in a reasonable length of time becomes a problem which must be overcome.

DESCRIPTION OF EXPERIMENT

Insensitive Ilford emulsions (K.O, K minus 1, and K minus 2) were used in this experiment. The emulsions were 100 microns thick, 1 x 3-in. glass-backed plates. They were exposed to artificially accelerated beams of heavy ions of C^{12} , N^{14} , O^{16} , N^{20} , A^{40} at the Lawrence Radiation Laboratory's Heavy Ion Linear Accelerator. Energies of 10.4 ± 0.2 Mey/nucleon were obtained. The 3-in. dimension of each plate was positioned in such a way that the entering ions made a 5-deg angle with the plane of the emulsions. Exposed in this manner, all ions recorded on a single plate had essentially the same momentum. The track lengths varied from 100 microns for A⁴⁰ to 200 microns for C¹². Each track was divided into 10-micron intervals. This was done so that the rate of energy loss could be considered as essentially constant over that region of track. In actual practice the change of dE/dx over the interval from its median value was almost always less than 10 percent. Because of the exponential nature of the gap-length distribution, only gaps over certain lengths had to be measured; this length was chosen to be 1/4 micron, the limitation being the resolution limit of the optical system.

The conventional technique of measuring gaps in nuclear tracks involves the use of a filar micrometer, an instrument consisting of a special eyepiece to which is attached a micrometer-screw mechanism that moves a hairline over a fixed reticle scale. This technique proved to be inadequate for the following reasons: (1) the image of the hairline often appeared wider than the distance to be measured, (2) the process was extremely slow since the micrometer reading had to be recorded before and after each measurement, and later converted to microns,

(3) a companion eyepiece could not be found for use on a binocular-body microscope, and (4) there was no convenient way of subdividing the track into 10-micron intervals.

EQUIPMENT

Figures 1 and 2 show the equipment used. The equipment consisted of a Cooke, Troughton and Simms Universal microscope used in conjunction with a special tilt superstage, a variable length monocular tube, a Leitz Micro-Ibso photomicrographic attachment, two Leitz cameras and calibrated illumination system.

Microscope

A standard Cooke Universal microscope stand was used. It rested on a 1/4-in. thick lead plate placed on a 3-in. thick piece of foam plastic. The padding was used to minimize vibrations normally occurring in any building and those due to the operator. Since each movement is magnified several hundred times at the image plane, any vibration renders photomicrography almost impossible. The above arrangement was found very satisfactory chiefly because of the fact that the foam plastic isolated the microscope from outside vibrations and dampened internal noise, such as the shutter movement. It is preferable to mount the microscope in such a way that it moves as a single unit. The original monocular tube of the microscope was replaced by one whose tube length was variable. The optical tube length could be adjusted to any required value, making it possible to use various objectives.

Stage

A specially designed superstage was mounted on the regular precision stage of the microscope. This device was capable of rotation about the Z axis and, at the same time, permitted the plane of the emulsion to be tilted so that the track appeared flat in the focal plane of the objective. (Fig. 3.) Owing to the shrinkage in thickness of the emulsion on processing, it was possible to bring tracks with dip angles up to 6 - 7 deg into the focal plane of the objective.

Optics

Oil immersion optics of high numerical aperture were used throughout. Leitz aplanatic-achromatic N.A. 1.4 and a Bausch and Lomb achromatic N.A. 1.4 condensers were used and both gave satisfactory results. A Leitz 100X plano apochromat N.A. 1.32 and a Zeiss 100X plano achromat N.A. 1.25 objectives were found to be excellent for this purpose. Their chief limitation in emulsion work is that of rather short working distance (270 microns for the Leitz objective). However, since the original thickness of our emulsion was 100 microns, and the final thickness of the processed emulsions was approximately 40 microns, this limitation did not affect our work. Taking the shrinkage factor into account, the Leitz objective can be used satisfactorily with emulsions of original thicknesses of up to 600 microns. This is assuming, of course, that the plane of the emulsion would not be tilted.

Photomicrographic Attachment

A standard Leitz Micro-Toso photomicrographic attachment was mounted on a bracket supported by a column attached to the microscope. (Figs. 1 and 2) By releasing a clamp on the support column, the Micro-Ibso could be swung into or out of position. The photographic eyepiece was a Leitz lOX periplan eyepiece in which was mounted a specially designed eyepiece micrometer disc (reticle). The eyepiece diaphragm was critically adjusted so that the image of the reticle was focused upon the image of the track (Fig. 4.) The reticle was cut on a machine similar to the one used at LRL in Berkeley, California.4 The ruling was done on a sheet of optical quality No. 3 Corning coverglass. The scale ruling of 200 divisions was so designed that the image of the ruled lines had the spacing of 0.5 micron between lines at a magnification of 1460 diameters. A separate reticle had to be cut for each objective because of the deviation of actual magnification from that specified by the manufacturer. The calibration of the reticles was checked and verified by using a Bausch and Lomb precision stage micrometer.

Illumination

A standard Cooke light source was used, powered by a Kepco Model PR 15-10M regulated D.C. power supply (regulated to 1 percent). Because of the fact that the area of the image is a function of exposure, the light intensity at the film plane had to be constantly monitored. This was done with the use of a Photovolt M501 lightmeter. The Photovolt itself was kept drift-free by the use of a standard lamp.

Maximum resolution with given optics was obtained with the use of monochromatic green light.

Cameras and Film

A 35-mm Leica and a Leitz 9 x 12-cm Makam camera were used. The Leica was equipped with a standard 1/3-reduction lens. Fine grain Kodak Panotomic X film was used. The Makam camera had a special Graphic back adapted to it so that either standard 4×5 -in. holders or 4×5 -in. packets of Polaroid film could be used.

EXPERIMENTAL PROCEDURE

Upon alignment of the microscope, the 1 x 3-in. nuclear emulsion was placed into the holder of the tilting stage. The tilt of the stage was varied until the image of the track appeared flat in the field of view. At this point either the stage or the photographic eyepiece was rotated in such a way that the image of the reticle was superimposed on the image of the track. (Fig. 5.) Each of the above adjustments was simple to execute since most of the tracks appeared as approximately parallel lines. (Deviations caused by multiple scattering are usually small for heavy ions.) Before photographing, the operator checked that perfect Kohler illumination existed, that the numerical apertures of the condenser and the objective were approximately equal, and that the light intensity was correct.6,7,8 The shutter mechanism of the Micro-Ibso was used exclusively. When used in conjunction with a Leica camera, the focal plane shutter of the camera was opened and remained so during the exposure. Focal plane shutters are not useful in photomicrography because of the vibrations which they create.

Each track was photographed in several sections. At the magnification of 1500 diameters, approximately 60 microns of track appeared on each photomicrograph with an overlap of from 5 to 10 microns on each end to permit interidentification between corresponding points of the track. (Fig. 5.) Two photomicrographs were necessary to record a complete Argon or Neon track and four for a complete track of Carbon. With this technique, the thickness of the reticle lines superimposed on the track images was reduced to the point where they no longer obscured the gaps to be measured and yet were clearly visible.

The advantages of this method are: (1) the calibration of the reticle remains constant and independent of shrinkage or expansion of film and the prints themselves; (2) in the process of developing the film and/or the prints, whatever happens to the image of the track also happens to the calibrated reticle lines; and (3) the speed with which grain density can be measured is increased significantly.

In this manner it was possible to take many thousands of photomicrographs and process them in a relatively short time.

EXPERIMENTAL PROBLEMS

Upon examination of Fig. 5, it is observed that the image of the reticle is sharp at the center of the field of view but becomes steadily more distorted toward the edge of the photograph. At the same time the primary image appears sharp at all points. This photomicrograph was taken with a 1/3 X reduction lens using the 35-mm Leica camera. The distortion of the reticle image did not appear when the Makam camera was used. (Fig. 6.) In this example both the image of the track and that of the reticle appear in focus throughout the field of view. Several different 1/3 X reduction lenses were tested, but all showed this pecularity. This made the task of taking data off film somewhat more difficult and also reduced its accuracy.

During the investigation it was found that the sensitivity of the films used varied considerably from batch to batch. The variation was such for No. 52 Polaroid film that the reported ASA number had very little significance. This was less true of the Kodak Panotomic X film. It was found advisable, however, to run a calibration on each different batch of film.

DISCUSSION

In practice, the technique described herein proved both fast and reliable. It was found that a well trained operator using the 35-mm

Leica camera could average thirty photomicrographs per hour. This is assuming, of course, that the track density is high so that a minimum amount of time is spent in searching for an event.

The errors encountered in measuring g₁ can be separated into two categories: those arising from the statistical fluctuations in the gap-length distributions, and the errors introduced by the subjectivity of different readers. It was found that the statistical errors were usually smaller than reader errors. When grain density was of the order of 2 grains/micron and less accuracy was of the order of 10 percent, between 2 and 4 grains/micron accuracy varied from 10 to 20 percent. Beyond 4 grains/micron accuracy deteriorated rapidly.

As mentioned, a disturbing feature of this technique is the fact that when the 35-mm camera is used, the quality of the image of the reticle deteriorates steadily toward the edges of the exposure. On the other hand, the Makam camera offers the advantage of sharp clear images at all points, but has the disadvantage of slow speed due to the fact that cut film is used. It seems advisable to combine the desirable features of both cameras. With this in mind, a new camera is being built which will fit the back of the Makam and will use 100-ft rolls of 35-mm movie film. This will enable two hundred exposures to be made on a single roll with no further magnification necessary, and will offer a wide variety in the types of film (both positive and negative) which may be used.

REFERENCES

- 1. C. F. Powell, P. H. Fowler, and D. H. Perkins. The Study of Elementary Particles by the Micrographic Method. Pergamon Press, 1959. p. 101.
- 2. W. H. Barkas. "Information Content of Particle Tracks," Phys. Rev. 124, 847 (1961).
- 3. J. W. Patrick and W. H. Barkas. "The Grain-Density of Emulsion Tracks," Nuovo Cimento Suppl. 23 1 (1962).
- 4. T. C. Hodges. "Microscope Equipment for Nuclear Emulsion Analysis," UCRL-9089. p. 27.
- 5. G. Alvial, A. Bonetti, C. Dilworth, M. Ladu, J. Morgan, and G. Occhialini. "Measurements of Ionization," Nuovo Cimento Suppl. 4, 244 (1956).
- 6. C. P. Shillaber. Photomicrography in Theory and Practice. Wiley and Sons, Inc., 1959. p. 66.
- 7. R. M. Allen. Photomicrography. D. Van Nostrand Co., 1958. p. 29.
- 8. M. Francon. Progress in Microscopy. Row, Peterson and Company, 1961. Chapters I and V.

Fig. 1 Cooke, Troughton and Simms microscope with a Leitz Micro-Ibso photomicrographic attachment and a 35-mm Leica camera.

Fig. 2 Cooke, Troughton and Simms microscope with a Leitz Micro-Ibso photomicrographic attachment and a Leitz 4 x 5-in. Makam camera.

Fig. 3 Tilting superstage.

Fig. 4 Measuring reticle for a Leitz periplanatic 10X eyepiece. Scale rulings of 200 divisions at 52 microns. Width of individual rulings is approximately 5 microns.

Fig. 5 A typical photomicrograph used in measurement of grain densities. Print made from a 35-mm Panotomic X exposure.

Fig. 6 A photomicrograph taken with Leitz Makam camera showing a sharp clear image of the reticle.

DISTRIBUTION

Copies

	NAVY
1-3 4 5 6 7-8 9 10 11 12 13 14-16 17 18-27 28 29 30 31 32 33	Chief, Bureau of Ships (Code 335) Chief, Bureau of Ships (Code 320) Chief, Bureau of Medicine and Surgery Chief, Bureau of Naval Weapons (RRMA-11) Chief, Bureau of Yards and Docks (Code 74) Chief, Bureau of Yards and Docks (Code C-400) Chief of Naval Operations (Op-07T) Chief of Naval Research (Code 104) Office of Naval Research (Code 422) Commander, New York Naval Shipyard (Material Lab.) Director, Naval Research Laboratory (Code 2021) CO, Office of Naval Research Branch Office, SF Office of Naval Research, FPO, New York CO, U.S. Naval Civil Engineering Laboratory U.S. Naval School (CEC Officers) Commander, Naval Air Material Center, Philadelphia Naval Medical Research Institute U.S. Naval Postgraduate School, Monterey Commander, Naval Ordnance Laboratory, Silver Spring CO, Naval Nuclear Ordnance Evaluation Unit (Code 4011)
35	Office of Patent Counsel, San Diego
	ARMY
36 37 38 39 40 41 42 43 44 45 46	Chief of Research and Development (Atomic Div.) Chief of Research and Development (Life Science Div.) Deputy Chief of Staff for Military Operations (DCM) Deputy Chief of Staff for Military Operations (CBR) Office of Assistant Chief of Staff, G-2 Chief of Engineers (ENGMC-EB) Chief of Engineers (ENGMC-DE) Chief of Engineers (ENGCW) CG, Army Materiel Command (AMCRD-RS-EE) CG, USA CBR Agency President, Chemical Corps Board
48	CO. Chemical Corps Training Command

49	Commandant, Chemical Corps Schools (Library)		
50	CG, CBR Combat Developments Agency		
51	CO, Chemical Research and Development Laboratories		
52	Commander, Chemical Corps Nuclear Defense Laboratory		
53	Hq., Army Environmental Hygiene Agency		
54			
55 55	CG, Aberdeen Proving Ground		
	Director, Walter Reed Army Medical Center		
56	CG, Combat Developments Command (CDCMR-V)		
57 53	CG, Quartermaster Res, and Eng. Command		
58	Hq., Dugway Proving Ground		
59-61	The Surgeon General (MEDNE)		
62	CO, Army Signal Res. and Dev. Laboratory		
63	CG, Engineer Res. and Dev. Laboratory		
64	Director, Office of Special Weapons Development		
65	CO, Army Research Office		
66	CO, Watertown Arsenal		
67	CG, Mobility Command		
68	CO, Ordnance Materials Research Office, Watertown		
69	CG, Munitions Command		
7Ó	00, Frankford Arsenal		
71	CG, Army Ordnance Missile Command		
<i>(</i> +	or army or district first fire comments		
	AIR FORCE		
	AIR PORCE		
72	Assistant Chief of Staff, Intelligence (AFCIN-3B)		
73-78	CG, Aeronautical Systems Division (ASAPRD-NS)		
79	Directorate of Civil Engineering (AFOCE-ES)		
80	Director, USAF Project RAND		
81	Commandant, School of Aerospace Medicine, Brooks AFB		
82	CG, Strategic Air Command (Operations Analysis Office)		
83	Office of the Surgeon (SUP3.1), Strategic Air Command		
84	CG, Special Weapons Center, Kirtland AFB		
85	Director, Air University Library, Maxwell AFB		
86-87	Commander, Technical Training Wing, 3415th TTG		
88	Commander, Electronic Systems Division (CRZT)		
	OTHER DOD ACTIVITIES		
89-91	Chief, Defense Atomic Support Agency (Library)		
92	Commander, FC/DASA, Sandia Base (FCDV)		
93	Commander, FC/DASA, Sandia Base (FCTG5, Library)		
94	Commander, FC/DASA, Sandia Base (FCWT)		
95-96	Office of Civil Defense, Washington		
97-106	Armed Services Technical Information Agency		
107	Director, Armed Forces Radiobiology Research Institute		
	AEC ACTIVITIES AND OTHERS		
108	Research Analysis Corporation		
109	Texas Instruments, Ing. (Mouser)		


```
110
            Aerojet General, Azusa
111
            Aerojet General, San Ramon
112
            Alco Products, Inc.
113
            Allis-Chalmers Manufacturing Co., Milwaukee
114
            Allis-Chalmers Manufacturing Co., Washington
115
            Allison Division - GMC
116-117
            Argonne Cancer Research Hospital
118-127
            Argonne National Laboratory
128
            Armour Research Foundation
129
            Atomic Bomb Casualty Commission
130
            AEC Scientific Representative, France
131
            AEC Scientific Representative, Japan
132-134
            Atomic Energy Commission, Washington
135-138
            Atomic Energy of Canada, Limited
139-142
            Atomics International
143-144
            Babcock and Wilcox Company
145-146
            Battelle Memorial Institute
147-150
            Brookhaven National Laboratory
151
            Carnegie Institute of Technology
152
            Chance Vought Aircraft, Inc.
153
            Chicago Patent Group
            Columbia University (Havens)
154
155
            Columbia University (NYO-187)
156
            Combustion Engineering, Inc.
157
            Combustion Engineering, Inc. (NRD)
158-162
            Defence Research Member
            duPont Company, Aiken
163-165
166
            duPont Company, Wilmington
167
            Edgerton, Germeshausen and Grier, Inc., Las Vegas
168
            Franklin Institute of Pennsylvania
169
            Fundamamental Methods Association
170-171
            General Atomic Division
            General Dynamics/Astronautics (NASA)
172
            General Dynamics/Convair, San Diego (BuWeps)
173
174
            General Dynamics, Fort Worth
175-176
            General Electric Company, Cincinnati
            General Electric Company, Pleasanton
177
178-183
            General Electric Company, Richland
184
            General Electric Company, San Jose
185
            General Electric Company, St. Petersburg
186
            General Nuclear Engineering Corporation
187
            General Scientific Corporation
188
            Gibbs and Cox, Inc.
189
            Goodyear Atomic Corporation
190
            Hughes Aircraft Company, Culver City
191-192
            Iowa State University
193-194
            Jet Propulsion Laboratory
195-197
            Knolls Atomic Power Laboratory
198
            Lockheed-Georgia Company
199
            Lockheed Missiles and Space Company (NASA)
200-201
            Los Alamos Scientific Laboratory (Library)
```

```
202
            Lovelace Foundation
203
            Maritime Administration
204
            Marquardt Corporation
205
            Martin-Marietta Corporation
            Massachusetts Institute of Technology (Leighton)
206
207
            Massachusetts Institute of Technology (Profio)
208-209
            Midwestern Universities Research Association
210
            Mound Laboratory
211
            NASA, Langley Research Center
212
            NASA, Lewis Research Center
213-214
            NASA, Scientific and Technical Information Facility
215
            National Bureau of Standards (Library)
216-217
            National Bureau of Standards (Taylor)
218
            National Lead Company of Ohio
219-220
            Nevada Operations Office
221
            New Brunswick Area Office
222
            New York Operations Office
223
            New York University (Fisher)
224
            New York University (Richtmeyer)
225
            Northeastern University
226
            Nuclear Materials and Equipment Corporation
227
            Nuclear Metals, Inc.
228
            Oak Ridge Institute of Nuclear Studies
229
            Office of Assistant General Counsel for Patents
230
            Pennsylvania State University
231-234
            Phillips Petroleum Company
235
            Power Reactor Development Company
236-238
            Fratt and Whitney Aircraft Division
239
            Princeton University (White)
240-241
            Public Health Service, Washington
242
            Public Health Service, Las Vegas
243
            Public Health Service, Montgomery
244
            Purdue University
245
            Rensselaer Polytechnic Institute
246
            Sandia Corporation, Albuquerque
247
            Sandia Corporation, Livermore
248
            Space Technology Laboratories, Inc. (Library)
249
            Stanford University (SLAC)
250
            Stevens Institute of Technology
251
            Technical Research Group
252
            Tennessee Valley Authority
253
            Texas Nuclear Corporation
254-255
            Union Carbide Nuclear Company (ORGDP)
256-260
            Union Carbide Nuclear Company (ORNL)
261
            Union Carbide Nuclear Company (Paducah Plant)
262-263
            United Nuclear Corporation (NDA)
264-265
            U.S. Coast and Geodetic Survey, Washington
266
            U.S. Geological Survey, Denver
267
            U.S. Geological Survey, Menlo Park
268
            U.S. Geological Survey, Naval Weapons Plant
269
            U.S. Geological Survey, Washington
```

270-271	University of California Lawrence Radiation Lab., Berkeley	
272-275	University of California Lawrence Radiation Lab., Livermore	
276	University of California, Los Angeles	
277	University of California, San Francisco	
278	University of Puerto Rico	
279	University of Rochester (Atomic Energy Project)	
280-281	University of Rochester (Marshak)	
282	University of Washington (Geballe)	
283	University of Washington (Rohde)	
284-287		
288-289	Westinghouse Electric Corporation (Rahilly)	
290	Westinghouse Electric Corporation (NASA)	
291	Western Reserve University (Major)	
292	Yale University (Schultz)	
293	Yale University (Breit)	
294	Yankee Atomic Electric Company	
295-319	Technical Information Extension, Oak Ridge	
	, -	
	USNRDL	
3 2 0–350	USNRDL, Technical Information Division	

DISTRIBUTION DATE: 7 December 1962

•	1. Gap lengths - Measurements 2. Nuclear emulsions 3. Particle tracks 4. Photomicrography I. Benton, E.V. II. Title III. S-R-007 II 01	sc. The gap lengths are
•	Naval Radiological Defense Laboratory USNRDL-TR-591 PHOTOMICROGRAPHIC TECHNIQUE FOR MEASUR- ING GRAIN DENSITIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS by E.V. Benton 26 October 1962 2lp. Illustr. 8 refs. UNCLASSIFIED A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emul- sions is reported. The method con- sists of obtaining photomicrographs of particle tracks with a super-	Imposed image of a calibrated eyeplece-micrometer disc. The gap lengths are measured to an accuracy of ½ micron.
	1. Gap lengths - Measurements 2. Nuclear emulsions 3. Particle tracks 4. Photomicrography I. Benton, E.V. II. Title III. S-R-007 II 01 UNCLASSIFED	c. The gap lengths are
	Naval Radiological Defense Laboratory USNRDL-TR-591 PHOTOMICROGRAPHIC TECHNIQUE FOR MEASUR- ING GRAIN DENSTIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS by E.V. Benton 26 October 1962 2lp. illustr. 8 refs. UNCLASSIFIED A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emul- sions is reported. The method con- sists of obtaining photomicrographs of particle tracks with a super-	Imposed image of a calibrated eyeplece-micrometer disc. The gap lengths are measured to an accuracy of ¼ micron.

•